A Sufficient Condition for the Boundedness of Operator-weighted Martingale Transforms and Hilbert Transform

نویسنده

  • SANDRA POTT
چکیده

Let W be an operator weight taking values almost everywhere in the bounded positive invertible linear operators on a separable Hilbert space H. We show that if W and its inverse W−1 both satisfy a matrix reverse Hölder property introduced in [2], then the weighted Hilbert transform H : LW (R,H) → L 2 W (R,H) and also all weighted dyadic martingale transforms Tσ : LW (R,H)→ L 2 W (R,H) are bounded. We also show that this condition is not necessary for the boundedness of the weighted Hilbert transform.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Martingale Transforms, the Dyadic Shift and the Hilbert Transform: a Sufficient Condition for Boundedness between Matrix Weighted Spaces

I fhI is the respective Haar coefficient, and σ(I) = ±1. This operator, which we denote by Tσ, is a dyadic martingale transform. The martingale transform is bounded as an operator on L(R,C). We want to find a condition on matrix weights, U and V , that implies that all martingale transforms are uniformly bounded as operators from L(R,C, V ) to L(R,C, U) where L(R,C, V ) is the space of function...

متن کامل

Logarithmic Growth for Matrix Martingale TransformA

We are going to give the example of the operator weight W satisfying operator Hunt-Muckenhoupt-Wheeden A 2 condition but which provides the unbounded martingale transform on L 2 (W). The construction relates weighted boundedness with the boundedness of \dyadic vector Hankel operators".

متن کامل

Bounds of Riesz Transforms on L Spaces for Second Order Elliptic Operators

Let L = −div(A(x)∇) be a second order elliptic operator with real, symmetric, bounded measurable coefficients on Rn or on a bounded Lipschitz domain subject to Dirichlet boundary condition. For any fixed p > 2, a necessary and sufficient condition is obtained for the boundedness of the Riesz transform ∇(L)−1/2 on the Lp space. As an application, for 1 < p < 3+ ε, we establish the Lp boundedness...

متن کامل

A remark on boundedness of composition operators between weighted spaces of holomorphic functions on the upper half-plane

In this paper, we obtain a sucient condition for boundedness of composition operators betweenweighted spaces of holomorphic functions on the upper half-plane whenever our weights are standardanalytic weights, but they don't necessarily satisfy any growth condition.

متن کامل

The foundational inequalities of D.L. Burkholder and some of their ramifications∗

Abstract This paper present an overview of some of the applications of the martingale inequalities of D.L. Burkholder to L-bounds for singular integral operators, concentrating on the Hilbert transform, first and second order Riesz transforms, the Beurling-Ahlfors operator and other multipliers obtained by projections (conditional expectations) of transformations of stochastic integrals. While ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004